Histology: The science concerned with the minute structure and organization of cells and tissues in relation to their function.

Definition of Tissue: Collection of similar cells that perform a common function and the surrounding intercellular substances (extracellular matrix).

Four Types of Tissue:
- Epithelial – covering/lining/gland forming
- Connective – supporting/binding
- Nervous – communication/control
- Muscle – movement

Definition of Organ: structure composed of at least 2 types of tissues that performs specific functions for the body.

Epithelial Tissue: a sheet of cells that covers a body surface, lines a body cavity, or forms a gland.

Functions of Epithelial Tissue:
- Protection – from mechanical/physical injury and infection; ex: skin
- Absorption – of nutrients, H2O, hormones, growth factors; ex: intestine
- Filtration – of blood/body fluids; ex: capillaries
- Excretion – of unwanted substances; ex: kidney tubule cells
- Secretion – of hormones, growth factors, lubricating substances; ex: stomach
- Sensory reception – some sensory receptors are modified epithelial cells; ex: gustatory (taste) cells

Distinguishing Characteristics of Epithelial Tissue:
- Cellular contribution: high; closely packed cells; relatively little extracellular matrix
- Specialized contacts: membrane junctions
 ~ Tight junctions
 ~ Gap junction
 ~ Desmosomes
- Polarity: highly polar; apical surface vs. basal surface
- Basement membrane: on basal surface; thin layer of extracellular material that supports the epithelial cells
- Vascularity: avascular; no blood vessels
- Regeneration: high capacity for regeneration

**Can be classified by their shape and their arrangement.

Classifications of Epithelia:
- Simple
- Stratified
- Squamous
- Cuboidal
- Columnar

Note that basal cells regenerate; as apical cells slough off, they are replaced by basal cells.
Major types of Epithelia:
Simple squamous, Stratified squamous, Simple cuboidal, Simple columnar, Pseudostratified Columnar, Transitional epithelium

2 Specialized subtypes of simple epithelial: 1. Endothelium (Lines blood vessels, inside of heart and inside of lymphatic vessels; made of endothelial cells.) 2. Mesothelium (lines the ventral body cavity and organs; part of peritoneum; Made of mesothelial cells)
(c) Simple columnar epithelium

Description: Single layer of tall cells with round to oval nuclei; some cells bear cilia; layer may contain mucus-secreting unicellular glands (goblet cells).

Function: Absorption; secretion of mucus, enzymes, and other substances; ciliated type propels mucus (or reproductive cells) by ciliary action.

Location: Nonciliated type lines most of the digestive tract (stomach to anal canal), gallbladder, and excretory ducts of some glands; ciliated variety lines small bronchi, uterine tubes, and some regions of the uterus.

Photomicrograph: Simple columnar epithelium of the stomach mucosa (1150x).

(d) Pseudostratified columnar epithelium

Description: Single layer of cells of differing heights, some not reaching the free surface; nuclei seen at different levels; may contain mucus-secreting goblet cells and bear cilia.

Function: Secretion, particularly of mucus; propulsion of mucus by ciliary action.

Location: Nonciliated type in male's sperm-carrying ducts and ducts of large glands; ciliated variety lines the trachea, most of the upper respiratory tract.

Photomicrograph: Pseudostratified ciliated

(e) Stratified squamous epithelium

Description: Thick membrane composed of several cell layers; basal cells are cuboidal or columnar and metabolically active; surface cells are flattened (squamous); in the keratinized type, the surface cells are full of keratin and dead; basal cells are active in mitosis and reproduce the cells of the more superficial layers.

Function: Protects underlying tissues in areas subjected to abrasion.

Location: Nonkeratinized type forms the moist linings of the esophagus, mouth, and vagina; urethra and anus; keratinized variety forms the epidermis of the skin, a dry membrane.

Photomicrograph: Stratified squamous epithelium lining the esophagus (430x).
Glandular epithelia - epithelia that forms a gland or part of a gland

Definition of gland: 1 or more cells that make and secrete a cellular product

Examples of secreted products: saliva, hormones, mucin

Most glands form by invagination of an epithelial sheet

Endocrine: secrete hormones/product → into surrounding extracellular space → taken up by blood, lymph and travel to target organs
--mostly ductless glands
--not all are epithelia-derived
--Exs: adrenal gland (located in the kidney/adrenaline is released); pituitary gland (located in the brain)
Exocrine- secrete product → onto epithelial surface or into body cavities
--mostly epithelia-derived
--most have a duct (except unicellular exocrine glands)
--more numerous than endocrine glands
--may be unicellular or multicellular

Exs: unicellular-goblet cells multicellular- salivary glands

Pancreas - Both an exocrine and an endocrine gland (some products are released directly and some are released through a duct)
Release of insulin and glucagon – endocrine
Release of digestive enzymes – exocrine (via a duct)

Connective Tissue: Four Subclasses
1. CT (connective tissue) proper
2. Cartilage
3. Bone
4. Blood

Major functions
--support and binding- bones to bones and bones to muscle
--protection- from shock, abrasion, infection
--insulation- heat retention
--transportation of substances- O2/CO2, nutrients

Distinguishing characteristics of CT
--Origin: all 4 types are derived from mesenchyme (embryonic tissue of the mesoderm)
--Vascularity: variable
--Cellular contribution: low cellular content compared to other tissue types; mostly ECM

Structural elements of CT
--ground substance- amorphous material that fills space between CT cells; contains fibers and holds fluid.
Composed of: interstitial fluids, adhesion proteins, and proteoglycans

->Proteoglycans = protein core + glycosaminoglycans (polysaccharides) ex: heparin
--fibers- elongated fibrous protein structures that provide support
--collagen- collagen protein monomers secreted by cells into ECM → assembled into tough, thick fibers in the ECM; very strong
- elastic: made of the protein elastin-coiled structure that stretches and recoils; found in skin, lungs, blood vessels
- reticular: fine protein fibers that form networks that support soft tissues and small vessels

"GROUND SUBSTANCE AND FIBERS COMprise THE ECM"

Cells

Immature-“blast”- actively mitotic cells that form the ECM and produce more “blast” CT cells which mature into “cytes”

Mature- “cyte” maintain health of the ECM; can produce proteins Ex.

Types of Connective Tissue (all derived from mesenchyme)

Connective Tissue Proper

--Loose- most widely distributed; absorbs H2O; usually vascular

--Aerolar- gel-like matrix with 3 fiber types; found under epithelial tissue and surrounding capillaries

Figure 4.8 -->

adipose-
stores nutrients, cushions, prevents heat loss; found in hypodermis, abdomen, breasts
Reticular—network of reticular fibers in the ECM; found in lymphatic tissues, bone marrow

Dense—durable; used for structure/binding; found in tendons, most ligaments, dermis, walls of large arteries

Cartilage - non-vascular, resilient, flexible CT

hyaline cartilage—most abundant cartilage type—“gristle” provides firm support matrix appears amorphous and glassy
exs: nose, trachea, larynx, ends of long bones

elastic cartilage—abundant in elastin fibers gives extra flexibility
exs: ears, epiglottis

fibrous cartilage—absorbs compressive shock well contains thick collagen fibers
exs: intervertebral discs, knee

Bone - osseous tissue;
matrix similar to cartilage except harder due to collagen fibers and Ca2+ salts; site of blood cell formation; vascularized

Figure 4.8c

Figure 4.8g

Figure 4.8j
Blood - blood cells surrounded by a fluid matrix; fibers are soluble proteins (fibrinogen) that aggregate and become visible upon clotting.

Covering and Lining Membranes
Definition - a continuous multicellular sheet composed of at least 2 primary tissue types: an epithelium bound to an underlying layer of CT proper.

Three major types
1. Cutaneous (skin)
 - comprised of keratinized stratified squamous epithelium (epidermis) firmly attached to a thick layer of dense CT (dermis)
 - is exposed to air and is a dry membrane
2. Mucous (mucosae)
 - Comprised of stratified squamous or simple columnar epithelium with underlying loose CT called Lamina propria
 - Wet membranes bathed by secretions (mucous or urine)
 - Found in open body cavities: digestive tract, respiratory tract, and urogenital tract
 - adapted for: absorption and secretion
3. Serous (serosae)
 - simple squamous epithelium with underlying loose CT
 - double-walled “sacs” containing fluid
 - wet membranes
 - Found in closed body cavities (thorax, abdominal cavities)
 - parietal surface - faces the outside surface of the organ
 - visceral surface - closest to the visceral organ (lines the cavity)
**3 types of serous membranes:
1. pleura - serosae lining the thoracic wall and covering the lungs
2. pericardium - serosa enclosing the heart
3. peritoneum - serosae of the abdominal cavity and visceral organs (contains mesothelium)
Nervous Tissue - makes up the nervous system (brain, spinal cord, nerves & sensory cells)

1. Neurons - highly specialized cells that generate and conduct electrical signals; usually contain processes (extensions of the cell)
 - Dendrites – carry electrical signals toward the cell body
 - Axons – carry electrical signals away from the cell body

2. Supporting cells (glia) - non-neuronal cells of the nervous system that insulate, protect, support and enhance the electrical activities of neurons

Muscle Tissue - highly cellular; well-vascularized; composed of elongated cells containing actin and myosin filaments; is responsible for most body movements
Cardiac muscle cells - shorter, uni-or binucleate cells with branching fibers that join at intercalated discs; found only in the heart; striated

Cardiac muscle

Description: Branching, striated, generally uninucleate cells that interdigitate at specialized junctions (intercalated discs).

Function: As it contracts, it propels blood into the circulation; involuntary control.

Location: The walls of the heart.

Smooth muscle cells - (called smooth muscle fibers); spindle-shaped; uninucleate cells with no striations

Smooth muscle

Description: Spindle-shaped cells with central nuclei; no striations; cells arranged closely to form sheets.

Function: Propels substances or objects (foodstuffs, urine, a baby) along internal passageways; involuntary control.

Location: Mostly in the walls of hollow organs.

Tissue Repair (3 steps) and Regenerative Capacity of Different Tissues

*read pp. 138-141 (to “Development Aspects...”) – know which tissues have different regeneration capacity

3 defenses exerted at the body's external boundaries

1. intact mechanical barriers such as the skin and mucosae
2. the cilia of epithelial cells lining the respiratory tract
3. the strong acid (chemical barrier) produced by the stomach glands

Inflammatory response - nonspecific reaction that develops quickly wherever tissues are injured

Immune response - extremely specific, but takes longer to take action

Regeneration - replacement of destroyed tissue with the same kind of tissue

Fibrosis - proliferation of fibrous connective tissue (scar tissue - strong, but lacks the flexibility and elasticity of most normal tissues; cannot perform the normal functions of the tissue it has replaced)
Steps of tissue repair

Regenerative Capacity of Different Tissues

Excellent capacity for regeneration:
-- epithelial tissues
-- bone
-- areolar connective tissue
-- dense irregular connective tissue
-- blood forming tissue

Moderate capacity for regeneration:
-- smooth muscle
-- dense regular connective tissue

No functional regenerative capacity (replaced by scar tissue):
-- cardiac muscle
-- nervous tissue

Terms used to describe altered cells, tissues and organs

Hypertrophy - enlargement of a cell mass, tissue or organ due to an increase in the size of cells
Hyperplasia - enlargement of a cell mass, tissue or organ due to an increase in the number of cells
Atrophy - decrease in the size of a cell mass, tissue or organ due to a decrease in the size or number of cells
Metaplasia - altered differentiation of cells to a type different than in the original tissue; may lead to → dysplasia → cancer